Swelling‐activated K efflux and regulatory volume decrease efficiency in human bronchial epithelial cells

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Maxi K+ channel mediates regulatory volume decrease response in a human bronchial epithelial cell line.

The cell regulatory volume decrease (RVD) response triggered by hypotonic solutions is mainly achieved by the coordinated activity of Cl- and K+ channels. We now describe the molecular nature of the K(+) channels involved in the RVD response of the human bronchial epithelial (HBE) cell line 16HBE14o-. These cells, under isotonic conditions, present a K+ current consistent with the activity of m...

متن کامل

Regulatory volume decrease in human esophageal epithelial cells.

In vivo human esophageal epithelial cells are regularly exposed to hyposmolal stress. This stress, however, only becomes destructive when the surface epithelial cell (barrier) layers are breached and there is contact of the hyposmolal solution with the basolateral cell membranes. The present investigation was designed to examine the effects of hyposmolal stress in the latter circumstance using ...

متن کامل

IK channels are involved in the regulatory volume decrease in human epithelial cells.

Parallel activation of Ca(2+)-dependent K(+) channels and volume-sensitive Cl(-) channels is known to be responsible for KCl efflux during regulatory volume decrease (RVD) in human epithelial Intestine 407 cells. The present study was performed to identify the K(+) channel type. RT-PCR demonstrated mRNA expression of Ca(2+)-activated, intermediate conductance K(+) (IK), but not small conductanc...

متن کامل

Regulatory volume decrease in neural precursor cells: taurine efflux and gene microarray analysis.

BACKGROUND/AIMS Neural stem/ progenitor cells (NPCs) endure important changes in cell volume during growth, proliferation and migration. As a first approach to know about NPC response to cell volume changes, the Regulatory Volume Decrease (RVD) subsequent to hypotonic swelling was investigated. METHODS NPCs obtained from the mesencephalon and the subventricular zone of embryonic and adult mic...

متن کامل

GSH depletion, K-Cl cotransport, and regulatory volume decrease in high-K/high-GSH dog red blood cells.

Thiol reagents activate K-Cl cotransport (K-Cl COT), the Cl-dependent and Na-independent ouabain-resistant K flux, in red blood cells (RBCs) of several species, upon depletion of cellular glutathione (GSH). K-Cl COT is physiologically active in high potassium (HK), high GSH (HG) dog RBCs. In this unique model, we studied whether the same inverse relationship exists between GSH levels and K-Cl C...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The FASEB Journal

سال: 2006

ISSN: 0892-6638,1530-6860

DOI: 10.1096/fasebj.20.5.a835-c